메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제16권 제4호
발행연도
2006.8
수록면
83 - 89 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 타입 I 최적 정규기저를 갖는 유한체 GF(2<SUP>m</SUP>)은 m 이 짝수이므로 암호학적으로 응용되지 못하는 단점이 있다. 그러나 타입 II 최적 정규기저를 갖는 유한체의 경우는 NIST에서 제안한 ECDSA의 권장 커브 중 GF(2²³³)위에 주어진 것이 있으며, 이 유한체가 타입 II 최적 정규기저를 갖는 등 여러 응용분야에 적용 되는바 효율적인 구현에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 타입 Ⅱ 최적 정규기저를 갖는 유한체 GF(2<SUP>m</SUP>)의 연산을 정규기저로 표현하여 확대체 GF(2<SUP>m</SUP>)의 원소로 나타내어 연산을 하는 새로운 병렬곱셈 연산기를 제안하였으며, 제안한 연산기는 기존의 가장 효율적인 결과들과 동일한 공간 및 시간 복잡도를 갖는 효율적인 연산기이다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 수학적 배경
Ⅲ. 타입 Ⅱ 최적 정규기저를 갖는 병렬곱셈 곱셈기
Ⅳ. 타입 Ⅱ 최적 정규기저를 갖는 유한체 연산기의 복잡도
Ⅴ. 결론
참고문헌
〈著者紹介〉

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017028581