메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제7권 제8호
발행연도
2007.8
수록면
13 - 20 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
의사결정나무는 대량의 데이터를 몇 개의 집단으로 분류하고, 미래상황을 예측하기 위해 자주 사용되는 분석기법 중의 하나이며, 각 노드에서 분할이 일어나면서 자라게 되고, 각 노드에 속하는 자료의 순수도가 효과적으로 증가하도록 진행된다. 또한 의사결정나무를 생성하는 과정에서 필요 이상의 가지(leaves)를 갖게 되면 노드의 분할을 정지하거나, 분류성능 향상에 큰 도움이 되지 못하는 가지를 잘라내게 된다. 이러한 가지치기의 결과로 의사결정나무의 형태가 변하게 되는데 이는 기존의 가지분할이 효율적이지 않았음을 의미하는 것이다.
본 연구에서는 가지치기의 교정뿐 아니라 새로운 분할과정을 혼합한 우수한 의사결정나무 추출 방법을 제안한다. 특히, 새로운 분할 노드의 선택에 있어 퍼지이론을 적용하여 분할의 효과성을 제고할 수 있는 방법을 제시하고자 한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 퍼지의사결정나무 분석
Ⅲ. 제안 알고리듬과 적용 예
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-016978242