메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Internet environment has made it crucial for companies to obtain and utilize valuable information on their customers. Nevertheless, the companies have difficulty in using the information effectively because the amount of data from their customers is usually huge, and it generally contains much noise due to anonymity of the Internet. As a result, extracting the underlying meanings and canceling the noise from the collected data become very important for so-called eCRM. In this paper, we propose the use of ICA (independent component analysis) as a preprocessing tool for the customer data collected from the Internet. Similar to traditional PCA (principal component analysis), ICA can reduce the dimension of the observed data, especially noisy variables. But, ICA is known to be superior to PCA because it is a multivariate statistical tool which extracts independent components or sources of information using a higher-order approach. To validate the usefulness of ICA, we applied it as the preprocessing tool for a real-world purchase prediction case for an online shopping mall. And then, we made a prediction for potential buyers using several algorithms such as logistic regression (LOGIT), case-based reasoning (CBR), artificial neural networks (ANN), and support vector machines (SVM). The experimental results showed that preprocessing by ICA led to better prediction accuracy of all the classifiers except for LOGIT.

목차

Abstract
Introduction
Theoretical Background
Independent Component Analysis
Research Design and Experiments
Experimental Results
Concluding Remarks
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017539239