메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
비디오 스트림이나 음성 아날로그 신호와 같은 연속된 데이타는 특징 공간(feature space)에서 다차원 데이타 시퀀스(multidimensional data sequence)로 모델링될 수 있다. 본 논문에서는 이러한 다차원 데이타 시퀀스의 효과적인 클러스터링 기법에 대하여 연구한다. 각 시퀀스는 차후의 저장 및 유사성 검색 (similarity search)을 효율적으로 실행하기 위하여 소수 개의 하이퍼 사각형 (hyper-rectangle) 형태의 클러스터로 표현된다. 본 논문에서는 사전에 정의된 수준의 클러스터링 품질을 보장하는 선형 복잡도를 갖는 클러스터링 알고리즘을 제시하고, 다양한 비디오 데이타에 관한 실험을 통하여 알고리즘의 적합성을 보여준다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 다차원 시퀀스의 클러스터링 특성

4. 클러스터링 알고리즘

5. 실험 결과 및 고찰

6. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017815448