메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지(B) 정보과학회논문지(B) 제26권 제9호
발행연도
1999.9
수록면
1,114 - 1,124 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
클러스터링은 동일한 클러스터에 속하는 데이타들 간에는 유사도가 크도록 하고 다른 클러스터에 속하는 데이타들 간에는 유사도가 작도록 주어진 데이타를 몇 개의 클러스터로 묶는 것이다. 어떤 대상을 기술하는 데이타는 수치 속성뿐만 아니라 정성적인 비수치 속성을 갖게 되고, 이들 속성값은 관측 오류, 불확실성, 주관적인 판정 등으로 인해서 정확한 값으로 주어지지 않고 애매한 값으로 주어지는 경우가 많다. 본 논문에서는 애매한 값을 퍼지값으로 표현하는 수치 속성과 비수치 속성을 포함한 데이타에 대한 비유사도 척도를 제안하고, 이 척도를 이용하여 퍼지값을 포함한 데이타에 대하여 퍼지 클러스터링하는 방법을 소개한 다음, 이를 이용한 실험 결과를 보인다.

목차

요약

Abstract

1. 서론

2. 퍼지집합 및 퍼지숫자

3. 데이타의 표현

4. 비유사도 척도

5. 퍼지 데이타에 대한 퍼지 클러스터링

6. 실험

7. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017752531