메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지식탐사 프로세스의 핵심적인 역할을 담당하는 데이타마이닝 단계에서는 여러 가지 목적에 따라 알고리즘을 선택하여 사용한다. 최근 통계, 비즈니스, 전자 상거래, 의학, 생물학 등의 분야에서 데이타마이닝 기술이 적극적으로 활용되고 있으며 이를 위해 다양한 알고리즘들이 계속해서 연구ㆍ개발되고 있다. 그러나 시간이 지나면 이들 중 각 분야 별로 우수한 응용성을 보이는 알고리즘이나 방대한 양의 데이타를 다루는데 있어 좋은 성능을 보이는 몇몇 알고리즘만이 남게될 것이며 또한 앞으로는 이러한 알고리즘들만을 선별하여 집중 연구할 필요가 있다. 따라서 본 논문에서는 데이타마이닝에 널리 사용되고 활발한 연구가 진행중인 알고리즘들 중에서 연관규칙(association rule), 클러스터링(clustering), 신경망(neural network), 결정트리(decision tree), 유전자 알고리즘(genetic algorithm), 베이지안 네트워크(bayesian network), 메모리 기반 추론(memory-based reasoning) 등 7가지 카테고리에 속하는 알고리즘들을 선정하여 분류ㆍ분석하였다. 우선 각 알고리즘의 계통과 특성들을 분석하였고 이를 토대로 비교ㆍ분석을 위한 14 가지의 분류 기준을 제시하였다. 이러한 분류 기준에 근거하여 세부 알고리즘들을 분석해 보고 비교 가능한 일부 알고리즘은 여러 특징과 성능을 중심으로 각각 최상의 알고리즘을 도출해 보았다. 본 연구결과는 데이타마이닝 분야의 혼재된 알고리즘들을 분류ㆍ분석함으로써 마이닝 기술 적용시 사용자에게 알고리즘 선택의 지표를 제시할 수 있을 것이다.

목차

요약

Abstract

1. 서론

2. 데이타마이닝 알고리즘의 계통과 특징

3. 분류 기준

4. 데이타마이닝 알고리즘 분석

5. 최상 알고리즘 선정

6. 결론 및 향후연구

참고문헌

부록

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017815140