메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
영한 기계번역에서 영어 문장의 동사구를 한국어로 정확하게 번역하기 위해서는 일반적으로 타동사와 목적어의 연어 관계를 이용한다. 본 논문에서는 k-최근점(k-nearest neighbor) 학습을 연어 관계에 적용하여 동사 번역을 선택하는 알고리즘을 제시하였는데 k-최근점 학습을 위해서 워드넷에서의 의미거리를 정의하여 사용하였다. 그리고 실시간 번역 시스템에 사용될 사전을 구성하기 위하여, 말뭉치로부터 타동사-목적어 쌍을 추출하여 학습예제를 구축하고, 이 예제의 크기를 번역률과 연관시켜 최적화시키는 알고리즘을 제시한다. 본 논문에서는 위의 알고리즘들을 사용하여 동사 "build"의 번역률을 약 90%로 유지하면서 사전의 크기를 최적화하였다.

목차

요약

Abstract

1. 소개

2. 연어사전의 생성

3. 번역 선택 알고리즘

4. 연어사전의 최적화

5. 실험 평가

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017796839