메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lateral Information-Propagation Neural Networks (LIPN) is proposed for fast interpolation through inter-node information propagation. If information is not available for every state, that for other states can be generated with some interpolation technique utilizing neighbored information. The proposed interpolation is a neural network-based method. Each node of the neural network represents a state in the quantized input space. A node of the network is composed of a processing unit and fixed weights from its adjacent nodes as well as its input terminal. With such neural network structure, information of a node propagates among neighbor nodes laterally and inter-node interpolation is achieved. The interpolation principle of the LIPN is explained through some numerical method in this paper. Also, 1-D LIPN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the LIPN hardware.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Lateral Information-Propagation Neural Networks (LIPN)

Ⅲ. Interpolation with LIPN

Ⅳ. Hardware implementation

Ⅴ. Experiments

Ⅵ. Conclusion

Acknowledgement

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017766264