메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology KSME International Journal Vol.18 No.7
발행연도
2004.7
수록면
1,121 - 1,130 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Genetic Algorithm (GA), an optimization technique based on the theory of natural selection, has proven to be a relatively robust means of searching for global optimum. It converges to the global optimum point without auxiliary information such as differentiation of function. In the case of a complex problem, the GA involves a large population number and requires a lot of computing time. To improve the process, this research used parallel processing with several personal computers. Parallel process technique is classified into two methods according to sub population's size and number. One is the fine~grained method (FGM) , and the other is the coarse-grained method (CGM). This study selected the CGM as a parallel process technique because the load is equally divided among several computers. The given design domain should be reduced according to the degree of feasibility, because mechanical system problems have constraints. The reduced domain is used as an initial design domain. It is consistent with the feasible domain and the infeasible domain around feasible domain boundary. This parallel process used the Message Passing Interface library.

목차

Abstract

1. Introduction

2. Parallel Genetic Algorithm

3. Reset of Initial Domain

4. Parallel Example

5. Conclusions

Acknowledgment

References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-014428084