메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 Management Science and Financial Engineering International Journal of Management Science Vol.10 No.1
발행연도
2004.5
수록면
25 - 41 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There have been many studies to build a model that can help investors construct optimal portfolio. Most of the previous models, however, are based upon the path-breaking Markowitz model (1959) which is a quantitative model. One of the most important problems with that kind of quantitative model is that, in reality, most of the investors use not only quantitative, but also qualitative information when they select their optimal portfolio. Since collecting both types of information from the markets are time consuming and expensive, making a set of target assets smaller, without suffering heavy loss in the rate of return, would attract investors. To extract only desired assets among all available assets, we need knowledge that identifies investors' preference for the risk of the assets. This study suggests two-layer decision-making rules capable of identifying an investor's risk preference and an architecture applying them to a quantitative portfolio model based on risk and expected return. Our knowledge-based portfolio system is to build an investor's preference-oriented portfolio. The empirical tests using the data from Korean capital markets show the results that our model contributes significantly to the construction of a better portfolio in the perspective of an investor's benefit/cost ratio than that produced by the existing portfolio models.

목차

ABSTRACT

1. INTRODUCTION

2. INVESTOR‘S RISK PREFERENCE IN PORTFOLIO DECISION-MAKING

3. TWO-LAYER INVESTMENT DECISION-MAKING

4. INVESTMENT SYSTEM USING TWO KNOWLEDGE LAYERS

5. EMPIRICAL TEST USING REAL DATA FROM KOREAN CAPITAL MARKETS

6. CONCLUDING REMARKS

REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-014010965