메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 전자공학회논문지 SP편 제41권 제2호
발행연도
2004.3
수록면
51 - 64 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 다수의 지문 특징점 템플릿(fingerprint minutiae template)을 융합하여 하나의 슈퍼 템플릿(super-template)을 생성하는 새로운 알고리즘을 제안한다. 슈퍼 템플릿은 지문의 올바른 특징점 정보만으로 구성된 템플릿을 의미하는 것으로써 본 연구에서 제안하는 재귀적 베이지안 추정(recursive Bayesian estimation) 방법으로 특징점의 신뢰도를 추정하여 높은 신뢰도를 가지는 특징점만으로 슈퍼 템플릿을 생성한다. 본 논문에서는 지문 영상이 순차적으로 획득될 때, 나중에 획득된 지문 영상 특징점 정보에 재귀적 베이지안 추정 기법을 적용하여 먼저 획득된 영상의 특징점들에 대한 신뢰도를 추정한다. 적용된 재귀적 베이지안 추정 방법은 여러 영상에서 공통적으로 발견된 특징점에 대해 그 신뢰도를 증가시키는 반면, 다른 영상에서 발견 되지 않는 특징점의 신뢰도는 감소시킨다. 같은 방법으로, 특징점의 타입(분기점과 단점)에 대한 신뢰도도 추정할 수 있다. 본 논문은 실험을 통해 제안한 알고리즘에 의한 슈퍼 템플릿이 인증 성능을 크게 향상시킬 수 있음을 보였다.

목차

요약

Abstract

1. 서론

2. 재귀적 베이지안 추정

3. 슈퍼 템플릿 생성 알고리즘

4. 실험 결과

5. 결과

참고문헌

저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-013798119