메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

서주현 (영남대학교, 영남대학교 대학원)

지도교수
이제영
발행연도
2019
저작권
영남대학교 논문은 저작권에 의해 보호받습니다.

이용수8

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this study, we propose the nomogram construction using logistic regression analysis and the naive Bayesian classifier for chronic diseases, and propose each nomogram using the Korean National Health and Nutrition Examination Survey (KNHANES) data. We identify risk factors for dyslipidemia and chronic obstructive pulmonary disease (COPD), and propose logistic nomogram, Bayesian nomogram to predict the incidence of dyslipidemia and COPD. The proposed nomogram is verified using AUC of ROC curve and calibration plot. In addition, we compare the logistic and the Bayesian nomograms.
The high risk factor of dyslipidemia was obesity, followed by diabetes, 56-69 years of age group, hypertension and heart disease (myocardial infarction and angina pectoris) in the order. On the other hand, there was diabetes in Bayesian nomograms, followed by heart disease, hypertension, and education level below elementary school level in the order. In COPD, asthma was the high risk factor in the logistic nomogram, followed by over 65 years of age group, men, and education level below middle school in the order. Asthma
was also the high risk factor in the Bayesian nomogram, followed by over 65 years of age group, tuberculosis, and current smoker in the order. The AUC of the ROC curve was statistically significant, 0.741, 0.737, 0.807, and 0.802, respectively. Finally, the coefficient of determination of the calibration plot (R2) was high as 0.931, 0.815, 0.900, 0.884. Using the nomograms suggested in this study, individual and health worker can easily identify the risk factors for chronic diseases and predict the incidence, which can be a great help in the prevention of chronic diseases.

목차

1. 서론 1
2. 통계적 연구방법 5
2.1. Logistic regression model을 통한 노모그램 5
2.1.1. Logistic regression model 5
2.1.2. Logistic 노모그램 구축 절차 소개 8
2.2. Naive Bayesian classifier model을 통한 노모그램 9
2.2.1. Naive Bayesian classifier model 9
2.2.2. Bayesian 노모그램 구축 절차 소개 11
2.3. ROC curve와 calibration plot을 통한 노모그램 검증 13
3. 적용 결과 14
3.1. 이상지질혈증의 노모그램 14
3.1.1. 이상지질혈증의 logistic 노모그램 17
3.1.2. 이상지질혈증의 Bayesian 노모그램 22
3.2. COPD의 노모그램 25
3.2.1. COPD의 logistic 노모그램 26
3.2.2. COPD의 Bayesian 노모그램 28
3.3. Logistic 노모그램과 Bayesian 노모그램의 비교 29
3.4. 이상지질혈증과 COPD의 노모그램 검증 31
3.4.1. ROC curve 32
3.4.2. Calibration plot 33
4. 결론 및 토의 34
참고문헌 37

최근 본 자료

전체보기

댓글(0)

0