메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Judith Nkechinyere Njoku (Kumoh National Institute of Technology) Anthony Uchenna Eneh (Africhange Technologies) Cosmas Ifeanyi Nwakanma (West Virginia University) Jae-Min Lee (Kumoh National Institute of Technology) Dong-Seong Kim (Kumoh National Institute of Technology)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제50권 제4호
발행연도
2025.4
수록면
549 - 560 (12page)
DOI
10.7840/kics.2025.50.4.549

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presents early results of a web-based digital twin (DT) for battery management systems (BMS). The proposed DT explores a hybrid of model-based and data-driven approaches, enabling the exploitation of each approach’s distinctive merits and constraints. Experiments employing explainable artificial intelligence (XAI) techniques were undertaken to select the most trustworthy and explainable approach to be deployed to a web server. First, a model-based DT was developed using physics based modelling and AI to achieve the hybrid model. Next, four models, including a deep neural network, a long-short-term memory network, a graph neural network (GNN), and a transformer neural network (TNN) model, were independently trained to minimize the residual between the actual battery data and the prediction of the model-based DT. All hybrid DT models were assessed based on mean squared error, latency, and prediction confidence. With the best confidence score of 98.255% and lowest latency of 0.079, the hybrid GNN DT model emerged as the best, demonstrating the viability of the proposed explainable hybrid approach in approximating actual battery behavior and the utility of a web-based DT.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Methodology
Ⅲ. Performance Evaluation and Results
Ⅳ. Conclusions and Future Works
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0