메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jun Yeop Kim (Dankook University) Ye Bin Shin (Dankook University) Yoon Gyoon Kim (Dankook University) Sung Giu Jin (Dankook University) Dong-Kee Kim (The Catholic University of Korea) Myung Joo Kang (Dankook University) Yong Seok Choi (Dankook University)
저널정보
한국질량분석학회 Mass Spectrometry Letters Mass Spectrometry Letters Vol.15 No.4
발행연도
2024.12
수록면
211 - 216 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Dexamethasone (DEX) is a glucocorticoid commonly used to treat idiopathic sudden sensorineural hearing loss (ISSNHL) and inner ear disorders like Meniere's disease. However, systemic administration of DEX is associated with significant side effects, such as hypertension and peptic ulcer, highlighting the need for safer and more effective intratympanic (IT) formulations and reliable methods for their in vivo evaluation. However, methods to determine DEX in the cochlea require a tissue lyser, uncommon in laboratories for instrumental analyses, and their analytical performances have not been validated. To address these issues, a simple and cost-effective method to determine DEX in murine cochlear tissue was developed using triamcinolone acetonide as the internal standard (IS), acetonitrile as a single extraction solvent, and LC-MS/MS as an instrumental method. The developed method was successfully validated through selectivity, linearity (r² ≥ 0.999 within 1–500 ng/mL), accuracy (ranging from 86.8% to 100.2%), precision (≤ 5.8%), matrix effect (91.56% to 104.46%), recovery (93.1% to 104.5%) and the lower limit of quantitation (1.0 ng/mL) following FDA guidelines. This method is expected to contribute to the development of novel formulations for IT delivery of DEX for inner ear disorders.

목차

Abstract
Introduction
Experimental
Results and Discussion
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0