메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shan Tong (Shijiazhuang College of Applied Technology) Yuting Zhang (Shijiazhuang College of Applied Technology) Shaokang Li (Hebei Normal University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.14 No.1
발행연도
2025.2
수록면
57 - 67 (11page)
DOI
10.5573/IEIESPC.2025.14.1.57

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The powerful feature learning capability of the AlexNet model of convolutional neural networks is gradually applied in land classification, but the model suffers from problems such as inconsistency between sample form and network requirements in its application. Therefore, this study proposes the optimized AlexNe-finetunet model, LCNet-27 model and LCNet-13 model based on AlexNet model to solve the problems of oversized training samples and model training input size, speed up model training and improve classification accuracy. The highest accuracy was 97.76% for the LCNet-27 model and 95.33% for the LCNet-13 model with 5×5 pixel input size, both higher than that of the AlexNet model finetune, 93.6% of the AlexNet model finetune. The LCNet-27 and LCNet-13 models obtained by optimizing the AlexNet model finetune with this study have improved the accuracy and faster classification speed in remote sensing image land classification, solving the problem of contradiction between sample size and model input size of the AlexNet model, which can be well applied in land classification problem. The novelty of this work lies in the innovative use of relative models for different studies for multiple aspects of land classification problems, using the AlexNe-refinement model, the LCNet-27 model, and the LCNet-13 model for a more comprehensive land classification study.

목차

Abstract
1. Introduction
2. Related Works
3. CNN-Based Land Cover Classification Model Research
4. The Finetune Effect of the AlexNet Model and the Application Results of the Remote Sensing Land Cover Classification
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092293474