메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Min Liu (Hunan Vocational College of Science and Technology) Jun Tang (Hunan Vocational College of Science and Technology)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제17권 제4호
발행연도
2021.8
수록면
754 - 771 (18page)
DOI
10.3745/JIPS.02.0161

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the task of continuous dimension emotion recognition, the parts that highlight the emotional expression arenot the same in each mode, and the influences of different modes on the emotional state is also different. Therefore, this paper studies the fusion of the two most important modes in emotional recognition (voice andvisual expression), and proposes a two-mode dual-modal emotion recognition method combined with theattention mechanism of the improved AlexNet network. After a simple preprocessing of the audio signal andthe video signal, respectively, the first step is to use the prior knowledge to realize the extraction of audiocharacteristics. Then, facial expression features are extracted by the improved AlexNet network. Finally, themultimodal attention mechanism is used to fuse facial expression features and audio features, and the improvedloss function is used to optimize the modal missing problem, so as to improve the robustness of the model andthe performance of emotion recognition. The experimental results show that the concordance coefficient of theproposed model in the two dimensions of arousal and valence (concordance correlation coefficient) were 0.729and 0.718, respectively, which are superior to several comparative algorithms.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0