메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임수창 (순천대학교) 김도연 (순천대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제9호
발행연도
2018.9
수록면
1,165 - 1,171 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
CNN은 객체의 특징을 추출하는 과정에서 많은 계산량과 메모리를 요구하고 있다. 또한 사용자에 의해 네트워크가 고정되어 학습되기 때문에 학습 도중에 네트워크의 형태를 수정할 수 없다는 것과 컴퓨팅 자원이 부족한 모바일 디바이스에서 사용하기 어렵다는 단점이 있다. 이러한 문제점들을 해결하기 위해, 우리는 사전 학습된 가중치 파일에 가지치기 방법을 적용하여 연산량과 메모리 요구량을 줄이고자 한다. 이 방법은 3단계로 이루어져 있다. 먼저, 기존에 학습된 네트워크 파일의 모든 가중치를 각 계층 별로 불러온다. 두 번째로, 각 계층의 가중치에 절댓값을 취한 후 평균을 구한다. 평균을 임계값으로 설정한 뒤, 임계 값 이하 가중치를 제거한다. 마지막으로 가지치기 방법을 적용한 네트워크 파일을 재학습한다. 우리는 LeNet-5와 AlexNet을 대상으로 실험을 하였으며, LeNet-5에서 31x, AlexNet에서 12x의 압축률을 달성 하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 가중치 압축
Ⅳ. 실험
Ⅴ. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0