메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xuan Zhou (Hangzhou Normal University Qianjiang College)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제17권 제2호
발행연도
2021.1
수록면
337 - 351 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Automatically recognizing facial expressions in video sequences is a challenging task because there is littledirect correlation between facial features and subjective emotions in video. To overcome the problem, a videofacial expression recognition method using spatiotemporal recurrent neural network and feature fusion isproposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face ina video image. In addition, two deep convolutional neural networks are used to extract the time-domain andairspace facial features in the video. The spatial convolutional neural network is used to extract the spatialinformation features from each frame of the static expression images in the video. The temporal convolutionalneural network is used to extract the dynamic information features from the optical flow information frommultiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporalfeatures learned by the two deep convolutional neural networks. Finally, the fused features are input to thesupport vector machine to realize the facial expression classification task. The experimental results oncNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed methodare as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposedmethod obtains higher recognition accuracy than other recently reported methods.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0