메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장경환 (극동대학교)
저널정보
대한방사선과학회 방사선기술과학 Journal of Radiological Science and Technology 제47권 제4호
발행연도
2024.8
수록면
263 - 270 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study was to evaluate the accuracy and impact of leaf open time (LOT) and pitch using various machine learning models on EBT film-based delivery quality assurance (DQA) performed on 211 patients of helical tomotherapy (HT). We randomly selected passed (n=191) and failed (n=20) DQA measurements to evaluate the accuracy of the k-nearest neighbor (KNN), support vector machine (SVM), naive Bayes (NB) and logistic regression (LR) models using scale-dependent metrics such as the coefficient of determination (R2), mean squared error (MSE), and root MSE (RMSE). We evaluated the performance of the four prediction models in terms of the accuracy, precision, sensitivity, and F1-score using a confusion matrix, finding the NB and LR models to achieve optimal results. The results of this study are expected to reduce the workload of medical physicists and dosimetrists by predicting DQA results according to LOT and pitch in advance.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0