메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jianzeng Chen (Nanchang Institute of Technology) Ningning Chen (Nanchang Institute of Technology)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) Journal of Information Processing Systems Vol.20 No.4
발행연도
2024.8
수록면
535 - 549 (15page)
DOI
10.3745/JIPS.01.0107

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Facial expressions (FEs) serve as fundamental components for human emotion assessment and human–computer interaction. Traditional convolutional neural networks tend to overlook valuable information duringthe FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deeplearning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanismfor precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone networkand introduced an improved group convolutional channel attention (GCCA) module in each block to emphasizethe crucial expression features. A partial decoder was added at the end of the backbone network to facilitate thefusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the modelto refine details layer-by-layer while introducing contextual information and extracting richer expressionfeatures. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss,creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectivenessof our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0