메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jiang Xueyan (Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, China) Ping Yaodong (Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, China) Chen Yuan (Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, China) Zhu Benben (Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, China) Fu Rong (Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, China) Hao Yiwei (Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, China) Fan Lei (Inner Mongolia Medical University, China)
저널정보
한국유전학회 Genes & Genomics Genes and Genomics Vol.46 No.7
발행연도
2024.7
수록면
831 - 850 (20page)
DOI
10.1007/s13258-024-01515-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Liver cancer is one of the most malignant liver diseases in the world, and the 5-year survival rate of such patients is low. Analgesics are often used to cure pain prevalent in liver cancer. The expression changes and clinical significance of the analgesic targets (ATs) in liver cancer have not been deeply understood. Objective The purpose of this study is to clarify the expression pattern of ATs gene in liver cancer and its clinical significance. Through the comprehensive analysis of transcriptome data and clinical parameters, the prognosis model related to ATs gene is established, and the drug information sensitive to ATs is mined. Methods The study primarily utilized transcriptomic data and clinical information from liver cancer patients sourced from The Cancer Genome Atlas (TCGA) database. These data were employed to analyze the expression of ATs, conduct survival analysis, gene set variation analysis (GSVA), immune cell infiltration analysis, establish a prognostic model, and perform other bioinformatic analyses. Additionally, data from liver cancer patients in the International Cancer Genome Consortium (ICGC) were utilized to validate the accuracy of the model. Furthermore, the impact of analgesics on key genes in the prognostic model was assessed using data from the Comparative Toxicogenomics Database (CTD). Results The study investigated the differential expression of 58 ATs genes in liver cancer compared to normal tissues. Patients were stratified based on ATs expression, revealing varied survival outcomes. Functional enrichment analysis highlighted distinctions in spindle organization, centrosome, and spindle microtubule functions. Prognostic modeling identified low TP53 expression as protective, while elevated CCNA2, NEU1, and HTR2C levels posed risks. Commonly used analgesics, including acetaminophen and others, were found to influence the expression of these genes. These findings provide insights into potential therapeutic strategies for liver cancer and shed light on the molecular mechanisms underlying its progression. Conclusions The collective analysis of gene signatures associated with ATs suggests their potential as prognostic predictors in hepatocellular carcinoma patients. These findings not only offer insights into cancer therapy but also provide novel avenues for the development of indications for analgesics.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0