메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
채종혁 (한국전자기술연구원) 이동규 (한국전자기술연구원) 오승훈 (한국전자기술연구원) 노유정 (부산대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.42 No.2
발행연도
2025.2
수록면
139 - 145 (7page)
DOI
10.7736/JKSPE.024.117

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we propose a deep learning-based method for large-area inspection aimed at the high-speed detection of micro hole diameters. Micro holes are detected and stored in large images using YOLOv8, an object detection model. A super-resolution technique utilizing ESRGAN, an adversarial neural network, is applied to images of small micro holes, enhancing them to high resolution before measuring their diameters through image processing. When comparing the diameters measured after 8x super-resolution with the results from existing inspection equipment, the average error rate is remarkably low at 0.504%. The time taken to measure an image of one micro hole is 0.470 seconds, which is ten times faster than previous inspection methods. These results can significantly contribute to high-speed measurement and quality improvement through deep learning.

목차

1. 서론
2. 딥러닝 모델 기반 Si-Cathode의 미세 구멍 가공 치수 대 면적 검사 방법
3. 실험 및 고찰
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092297141