메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yundi Chu (Hohai University) Cheng Zhou (Hohai University) Shixi Hou (Hohai University) Houzhi Chen (Hohai University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
1,017 - 1,022 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The study uses a recurrent meta-cognitive fuzzy neural network (RMCFNN) to present an adaptive fractional order (FO) terminal sliding mode control (TSMC) method for the robust current management of active power filter (APF). By taking into account the fact that the external disturbances and parametric perturbations of the APF are bounded, a fractional order terminal sliding mode control is created. Due to an additional degree of freedom, the suggested scheme with a FO sliding surface can provide improved finite-time high-precision tracking performance as compared to the traditional TSMC approach. Next, in order to obtain an absorbing model-free feature resulting from RMCFNN, a novel observer-based FOTSMC is constructed. The construction of specialized online updating systems for the parameters and structure of RMCFNN aims to enhance the capacity to manage uncertainties. Meanwhile, Lyapunov theory can be used to obtain finite-time convergence characteristic and closed-loop stability. Ultimately, the findings of modeling and experimentation show that the suggested observer-based FOTSMC has better control performance than other current schemes and is simple to build using a microcontroller.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. RECURRENT META-COGNITIVE FUZZY NEURAL NETWORK (RMCFNN)
4. FOTSMC using RMCFNN estimator
5. Simulation Results
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0