메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yihan Liu (National University of Singapore) Yuxiang Zhang (National University of Singapore) Shuzhi Sam Ge (National University of Singapore) Xiaoling Liang (National University of Singapore) Min Yuan (National University of Singapore) Bernard Voon Ee HOW (Singapore Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
904 - 909 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes a novel integrated strategy aimed at enhancing both energy efficiency and safety levels in maritime operations by leveraging advanced ship trajectory optimization and motion control technologies. The paper quantitatively analyzes CO₂ emissions and fuel consumption using the International Maritime Organization’s Energy Efficiency Operational Indicator (EEOI). Additionally, it employs Particle Swarm Optimization (PSO) algorithms to adjust and optimize ship routes, thereby significantly reducing energy consumption. Moreover, the research delves into precise ship motion control under constraints and uncertainties within a Multiple-Input–Multiple-Output (MIMO) nonlinear system environment. It achieves this by utilizing asymmetric barrier Lyapunov functions (ABLF) and adaptive neural networks (NN), which together ensure robust and reliable control performance. By integrating these advanced methodologies, the study provides comprehensive solutions that are applicable for sustainable and safe maritime operations. Simulation results demonstrate the effectiveness of using PSO to design vessel trajectory to reduce vessel fuel consumption and the effectiveness of ABLF and adaptive NN for ship safe motion control.

목차

Abstract
1. INTRODUCTION
2. MODEL CONSTRUCTION
3. TRAJECTORY OPTIMIZATION AND CONTROL DESIGN
4. SIMULATION AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0