메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Wenqi Zhang (Northwestern Polytechnical University) Zhenbao Liu (Northwestern Polytechnical University) Zhen Jia (Northwestern Polytechnical University) Zhiqi Liu (Northwestern Polytechnical University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
750 - 755 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of this paper is to propose a fault diagnosis method based on an improved unknown input observer (UIO) for electro-hydraulic actuator (EHA) systems. The method is designed to enhance the accuracy and reliability of fault diagnosis in EHA systems, which are known to be complex and nonlinear. The improved UIO is capable of effectively filtering out unknown interference by optimising the observer gain and state estimation algorithm. This paper presents a validation of the proposed method through the use of the MATLAB/Simulink simulation platform, which allows for the testing of the system performance under normal and faulty working conditions. The results demonstrate that the enhanced UIO outperforms the conventional adaptive observer in terms of estimation accuracy, fault detection rate, isolation rate, detection time, and false alarm rate. This is particularly evident in the cases of sensor fault, actuator fault, and hydraulic leakage fault, where the detection rate reaches 95%, 90%, and 88%, respectively, and the isolation rate reaches 90%, 88%, and 85%, respectively. These enhancements significantly enhance the fault diagnosis capability of the EHA system, thereby providing an effective guarantee for its safety and reliability and having important practical application value.

목차

Abstract
1. INTRODUCTION
2. System Modelling
3. Observer design
4. Simulation verification
5. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0