메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박우현 (금오공과대학교) 김민석 (금오공과대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.41 No.12
발행연도
2024.12
수록면
965 - 972 (8page)
DOI
10.7736/JKSPE.024.098

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Microfluidics allows for precise manipulation of small volumes of analytical solutions in diverse applications, including disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. Among these diverse applications, one of the most critical aspects is the precise and programmable control of flow within microfluidic control devices. However, microfluidic experiments that employ pressure control via a gas tank may encounter restricted mobility. To address these challenges, we developed an air pump feedback control system utilizing artificial intelligence image analysis and devised a method to enhance portability. In this paper, we utilized a commercially available portable pump to achieve the desired pressure and subsequently cease operation. In addressing the challenge of sustaining prolonged pressure, we implemented a strategy wherein the dimensions of the pressure vessel were modified, accompanied by iterative pump activations, thereby ensuring the sustained maintenance of pressure over time. The evaluation of the flow controller developed in this study involves conducting a comparative flow analysis with established pneumatic flow controllers. Furthermore, we employed artificial intelligence image analysis methods to automate the operation of iterative pumps. In conclusion, we anticipate that the developed portable microfluidic control device will lead to innovative advancements in modern technology and healthcare through its potential applications.

목차

1. 서론
2. 방법
3. 실험 결과 및 고찰
4. 결론
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091195219