메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
육도경 (국립금오공과대학교) 손정우 (국립금오공과대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.41 No.3
발행연도
2024.3
수록면
223 - 230 (8page)
DOI
10.7736/JKSPE.023.141

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, research on machine learning techniques that can be integrated with existing suspension control algorithms for enhanced control effects has advanced considerably. Machine learning, especially involving neural networks, often requires many samples, which makes maintaining robust performance in diverse, changing environments challenging. The present study applied reinforcement learning, which can generalize complex situations not previously encountered, to overcome this obstacle and is crucial for suspension control under varying road conditions. The effectiveness of the proposed control method was evaluated on different road conditions using the quarter-vehicle model. The impact of training data was assessed by comparing models trained under two distinct road conditions. In addition, a validation exercise on the performance of the control method that utilizes reinforcement learning demonstrated its potential for enhancing the adaptability and efficiency of suspension systems under various road conditions.

목차

1. 서론
2. 실험 구성
3. 실험 결과 및 분석
4. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089448988