메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim Ji-Woo (Big Data Linkage Division, Health Insurance Review) Choi Hyojung (Digital Medical Technology Listing Division, Health Insurance Review) Lim Hyun jeung (DRG Administration Division, Health Insurance Review) Oh Miae (Center for Research on Big Data Information, Korea Institute for Health and Social Affairs, Sejong, Korea.) Ahn Jae Joon (Division of Data Science, Yonsei University, Wonju, Korea.)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.39 No.14
발행연도
2024.4
수록면
1 - 11 (11page)
DOI
10.3346/jkms.2024.39.e127

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: To overcome the limitations of relying on data from a single institution, many researchers have studied data linkage methodologies. Data linkage includes errors owing to legal issues surrounding personal information and technical issues related to data processing. Linkage errors affect selection bias, and external and internal validity. Therefore, quality verification for each connection method with adherence to personal information protection is an important issue. This study evaluated the linkage quality of linked data and analyzed the potential bias resulting from linkage errors. Methods: This study analyzed claims data submitted to the Health Insurance Review and Assessment Service (HIRA DATA). The linkage errors of the two deterministic linkage methods were evaluated based on the use of the match key. The first deterministic linkage uses a unique identification number, and the second deterministic linkage uses the name, gender, and date of birth as a set of partial identifiers. The linkage error included in this deterministic linkage method was compared with the absolute standardized difference (ASD) of Cohen’s according to the baseline characteristics, and the linkage quality was evaluated through the following indicators: linked rate, false match rate, missed match rate, positive predictive value, sensitivity, specificity, and F1-score. Results: For the deterministic linkage method that used the name, gender, and date of birth as a set of partial identifiers, the true match rate was 83.5 and the missed match rate was 16.5. Although there was bias in some characteristics of the data, most of the ASD values were less than 0.1, with no case greater than 0.5. Therefore, it is difficult to determine whether linked data constructed with deterministic linkages have substantial differences. Conclusion: This study confirms the possibility of building health and medical data at the national level as the first data linkage quality verification study using big data from the HIRA. Analyzing the quality of linkages is crucial for comprehending linkage errors and generating reliable analytical outcomes. Linkers should increase the reliability of linked data by providing linkage error-related information to researchers. The results of this study will serve as reference data to increase the reliability of multicenter data linkage studies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0