메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김지애 (건강보험심사평가원 연구조정실 약제정책연구팀) 윤석준 (고려대학교) 김록영 (건강보험심사평가원) 김동숙 (건강보험심사평가원)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.32 No.5
발행연도
2017.1
수록면
718 - 728 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Health Insurance and Review Assessment (HIRA) in South Korea, also called National Health Insurance (NHI) data, is a repository of claims data collected in the process of reimbursing healthcare providers. Under the universal coverage system, having fee-for-services covering all citizens in South Korea, HIRA contains comprehensive and rich information pertaining to healthcare services such as treatments, pharmaceuticals, procedures, and diagnoses for almost 50 million beneficiaries. This corpus of HIRA data, which constitutes a large repository of data in the healthcare sector, has enormous potential to create value in several ways: enhancing the efficiency of the healthcare delivery system without compromising quality of care; adding supporting evidence for a given intervention; and providing the information needed to prevent (or monitor) adverse events. In order to actualize this potential, HIRA data need to actively be utilized for research. Thus understanding this data would greatly enhance this potential. We introduce HIRA data as an important source for health research and provide guidelines for researchers who are currently utilizing HIRA, or interested in doing so, to answer their research questions. We present the characteristics and structure of HIRA data. We discuss strengths and limitations that should be considered in conducting research with HIRA data and suggest strategies for optimal utilization of HIRA data by reviewing published research using HIRA data.

목차

등록된 정보가 없습니다.

참고문헌 (60)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0