메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyuek Jae Lee (Kyungnam University)
저널정보
한국광학회 Current Optics and Photonics Current Optics and Photonics Vol.8 No.5
발행연도
2024.10
수록면
508 - 514 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a deep learning-based weight sensor, using optical speckle patterns of multimode fiber, designed for real-time intrusion detection. The weight sensor has been trained to identify 11 distinct speckle patterns, ranging in weight from 0.0 kg to 2.0 kg, with an interval of 200 g between each pattern. The estimation for untrained weights is based on the generalization capability of deep learning. This results in an average weight error of 243.8 g. Although this margin of error precludes accurate weight measurement, the system’s ability to detect abrupt weight changes makes it a suitable choice for intrusion detection applications. The weight sensor is integrated with the Google Teachable Machine, and real-time intrusion notifications are facilitated by the ThingSpeak<SUP>TM</SUP> cloud platform, an open-source Internet of Things (IoT) application developed by MathWorks.

목차

I. INTRODUCTION
II. PRINCIPLE
III. DEEP LEARNING-BASED FIBER OPTIC WEIGHT SENSOR
IV. REAL-TIME INTRUSION DETECTION
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0