메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ha Thi Tran (Kongju National University) The-Hien Pham (Kongju National University) Yun-Seok Mun (Kongju National University) Ic-Pyo Hong (Kongju National University)
저널정보
한국전자파학회JEES Journal of Electromagnetic Engineering And Science Journal of Electromagnetic Engineering And Science Vol.24 No.5
발행연도
2024.9
수록면
510 - 523 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Drones have found extensive utility in both public and personal places. Consequently, the accurate detection and tracking of drones have emerged as pivotal endeavors in terms of ensuring their optimal performance. This research paper introduces a novel application for discerning the movements of humans and drones from cloud points through the utilization of frequency-modulated continuous wave radar. The dynamic density-based spatial clustering of applications with noise (Dynamic-DBSCAN) algorithm was employed to classify cloud points into separate groups corresponding to the number of objects within the tracking area. Compared to the original DBSCAN algorithm, this method increased accuracy by about 16.8%, achieving an accuracy of up to 93.99%. Subsequently, a trio of deep learning algorithms-long short-term memory, deep neural network, and residual network (ResNet)—were harnessed to ascertain the categorization of each group as either human or drone. According to the results, ResNet achieved the best accuracy rate of 97.72%. Overall, this study underscores the efficacy of the proposed method in accurately and efficiently distinguishing between human and drone entities for effective monitoring and management.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. THEORY AND METHODOLOGY
Ⅲ. EXPERIMENT AND RESULT
Ⅳ. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0