메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김유희 (Shinhan University) 구건우 (Dongguk University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제9호(통권 제246호)
발행연도
2024.9
수록면
69 - 77 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 GPT-2-Small 버전 모델을 사용하여 한국어와 영어를 학습하는 이중 언어 모델의 성능을 평가하고, 다양한 학습 조건이 모델 성능에 미치는 영향을 분석하였다. 연구 방법으로 단일 언어 학습, 순차 학습, 순차-교차 학습, 순차-EWC 학습의 네 가지 조건을 설정하여 모델을 훈련하였다. 국립국어원 말뭉치와 영어 위키피디어 말뭉치를 사용하고, PPL과 BLiMP 지표를 통해 성능을 측정하였다. 연구결과, 단일 언어 학습 조건에서 PPL 값은 16.2, BLiMP 정확도는 73.7%로 가장 우수한 성능을 보였다. 반면, 순차-EWC 학습 조건에서는 PPL 값이 41.9로 가장 높았고, BLiMP 정확도는 66.3%로 가장 낮았다(p< 0.05). 단일 언어 학습이 이중 언어 모델 성능 최적화에 가장 효과적임을 확인하였다. 이는 결정적 시기 이론에 따라 모델이 단일 언어에 최적화될 때 더 나은 성능을 보인다는 것을 의미한다. 또한, 프로그래밍 가소성을 조절하는 EWC 정규화를 적용한 지속 학습 조건에서는 성능 저하가 두드러졌는데, 이는 정규화가 가중치 업데이트를 제한하여 새로운 언어 학습 능력을 저하시켰다는 것을 의미한다. 본 연구는 언어 모델링에 대한 이해를 높이고, AI 언어 학습에서 인지적 유사성을 개선하는 데 기여한다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Methodology
IV. Proposed GPT-2-Small Based Bilingual Language Modeling
V. Experiments
VI. Results
VII. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0