메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Saad A. Yehia (Higher Institute of Engineering and Technology) Sabry Fayed (Kafrelsheikh University) Mohamed H. Zakaria (Kafrelsheikh University) Ramy I. Shahin (Higher Institute of Engineering and Technology)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.18 No.5
발행연도
2024.9
수록면
1,009 - 1,034 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The contribution of shear resisted by flanges of T-beams is usually ignored in the shear design models even though it was proven by many experimental studies that the shear strength of T-beams is higher than that of equivalent rectangular cross-sections. Ignoring such a contribution result in a very conservative and uneconomical design. Therefore, the aim of this research is to investigate the capability of machine learning (ML) techniques to predict the shear capacity of reinforced concrete T-beams (RCTBs) by incorporating the contribution of the flange. Five machine learning (ML) techniques, which are the Decision Tree (DT), Random Forest (RF), Gradient Boosting Regression Tree (GBRT), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), are trained and tested using 360 sets of data collected from experimental studies. Among the various machine learning models evaluated, the XGBoost model demonstrated exceptional reliability and precision, achieving an R-squared value of 99.10%. The SHapley Additive exPlanations (SHAP) approach is utilized to identify the most influential input features affecting the predicted shear capacity of RCTBs. The SHAP results indicate that the shear span-to-depth ratio (a/d) has the most significant effect on the shear capacity of RCTBs, followed by the ratio of shear reinforcement multiplied by the yield strength of shear reinforcement (ρvf<SUB>yv</SUB> ), flange thickness ( h<SUB>f</SUB> ), and flange width ( b<SUB>f</SUB> ). The accuracy of the XGBoost model in predicting the shear capacity of RCTBs is compared with established codes of practice (ACI 318-19, BS 8110-1:1997, EN 1992-1-2, CSA23.3-04) and existing formulas from researchers. This comparison reinforces the superior reliability and accuracy of the machine learning approach compared to traditional methods. Furthermore, a user-friendly interface platform is developed, effectively simplifying the implementation of the proposed machine-learning model. The reliability analysis is performed to determine the value of the resistance reduction factor (φ) that will achieve a target reliability index (β<SUB>τ</SUB> = 3.5).

목차

Abstract
1 Introduction
2 Research significance
3 Experimental Database
4 Machine Learning Models
5 Results and Discussion
6 Reliability Analysis for Shear Capacity of RCTBs
7 Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0