메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ke Du (China Earthquake Administration) Huan Luo (China Earthquake Administration) Jiulin Bai (Chongqing University) Jingjiang Sun (China Earthquake Administration)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.13 No.5
발행연도
2019.7
수록면
603 - 628 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reinforced concrete (RC) coupled wall systems, compared with RC shear wall without opening, have more complex nonlinear behavior under the extreme earthquake loads due to the existence of coupling beams. The behavior characteristics induced by nonlinear shear deformation such as shear–flexure interaction, pinching effect, strength and stiffness deterioration are clearly observed in numerous cyclic tests of RC coupling beams and shear walls. To develop an analytical model capable of accurately and efficiently assessing the expected seismic performance of RC coupled wall systems, it is critical to define the appropriate key components models (i.e., nonlinear models of RC wall piers/shear walls and coupling beams). Classic fiber beam element based on the theory of Euler–Bernoulli beam is frequently adopted to simulate the nonlinear responses of slender RC wall piers and coupling beams in the literature because it is able to accurately model the response characters from interaction of axial–bending moment at the section level. However, classic fiber beam element cannot capture the nonlinear behaviors of non-slender structures mainly controlled by nonlinear shear deformation. To overcome this shortcoming, a modified force-based fiber element (MFBFE) including shear effect is introduced and used as the analysis element of non-slender RC coupling beams and shear walls. At the section level, a novel shear model for RC coupling beams and an existed shear model for RC shear walls are respectively added to this fiber element to simulate nonlinear responses of these two key components. The analytical model for RC coupled walls hence is formed through integrating the proposed models of these two key components. The validations with different experimental results of cyclic tests including key components and structural system reported in the literature using these proposed models are performed. Good agreements are achieved for all of these proposed models via comparisons between predicted results and experimental data.

목차

Abstract
1. Introduction
2. Formulation of the MFBFE
3. Fomulation and Validation of the MFBBE
4. Fomulation and Validation of the MFBWE
5. Fomulation and Validation of the Cwe
6. Discussion of the Models
7. Conclusions
References

참고문헌 (62)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0