메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seungjae Shin (Mississippi State University)
저널정보
인하대학교 정석물류통상연구원 Journal of International Logistics and Trade Journal of International Logistics and Trade Vol.22 No.1
발행연도
2024.3
수록면
22 - 38 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose – The purpose of this study is to compare the competition and productivity of the US freight rail transportation industry for the past 41 years (1980 ∼ 2020), which consists of the two periods, before and after the abolishment of the Interstate Commerce Commission (ICC) in 1995.
Design/methodology/approach – This study investigates any relationships between the market concentration index values and labor productivity values in the separate two periods, and how the existence of a regulatory body in the freight transportation market impacted the productivity of the freight rail transportation industry by using a Cobb–Douglas production function on annual financial statement data from the US stock exchange market.
Findings – This study found that, after the abolishment of the ICC: (1) the rail industry became less competitive, (2) even if the rail industry had an increasing labor productivity trend, there was a strong negative correlation between the market concentration index and labor productivity and (3) the rail industry’s total factor productivity was decreased.
Originality/value – This study is to find empirical evidence of the effect of the ICC abolishment on the competition and productivity levels in the US freight rail transportation industry using a continuous data set of 41-year financial statements, which is unique compared to previous studies.

목차

Abstract
1. Introduction
2. Literature review
3. Data
4. Market competition and labor productivity
5. Regression analysis
6. Discussion
7. Conclusion and limitation
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0