메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ajay Gautam (Korea University of Technology and Education)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제48권 제4호
발행연도
2024.8
수록면
207 - 218 (12page)
DOI
10.5916/jamet.2024.48.4.207

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A computationally efficient nonlinear model predictive control (MPC) scheme is presented for the problem of trajectory tracking control, in the 3D space, of autonomous underwater vehicles (AUVs) under constrained speeds and thruster forces, and possibly in the presence of disturbances and actuator limitations. The proposed scheme considers AUV dynamics with four degrees of maneuverability and uses an accurate modeling of the discrete-time dynamics of the system using a suitable neural network that enables efficient state propagations and MPC cost gradient computations owing to the parallel computation structure of the network, thereby allowing a more efficient solution of the constrained nonlinear MPC optimization problem using a sequential quadratic programming-based approach. This also paves way for MPC optimizations over larger time horizons which may be necessary under certain situations. The effectiveness of the proposed scheme is verified with extensive simulations covering various scenarios including the ones that deal with the presence of random and non-random time-varying disturbances and, additionally, the condition of underactuation of the vehicle due to the failure of an actuator.

목차

Abstract
1. Introduction
2. System Description
3. AUV Trajectory Tracking with NMPC using Neural-Modeled System Dynamics
4. Numerical Simulations
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090644601