메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Taehwan Ko (Hanyang University) Heuisu Kim (Hanyang University) Yeoungcheol Shin (Hanyang University) Dukyong Kim (Hanyang University) Young Hoon Lee (Hanyang University) Jinsu Hong (Hanyang University) Seung Hwan Lee (Hanyang University)
저널정보
대한용접·접합학회 대한용접·접합학회지 大韓熔接·接合學會誌 第42卷 第4號
발행연도
2024.8
수록면
357 - 365 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This review introduces recent research on applying physics-informed neural networks (PINNs) to additive manufacturing and welding. PINNs, which are artificial intelligence models, integrate governing equations containing physical information with artificial neural networks, enabling the modeling of complex physical phenomena at a lower computational cost than traditional numerical models. Although PINNs have been employed in a limited number of studies on welding processes, they have been extensively used in various studies within the field of additive manufacturing. This study reviews the theoretical background of PINNs to explore their effective application to welding processes, examining 12 research cases in additive manufacturing and two research cases in welding processes. The analysis included the structure of the PINN, governing equations, and prediction results of each study. Results indicate that PINNs provide faster computation speeds and higher prediction accuracies than numerical models. Moreover, they could perform analyses without additional training even when process parameters and materials changed. Additionally, PINNs have been effectively applied to predict the mechanical properties of the molten zone. Consequently, PINNs are anticipated to be actively applied in future research on welding process modeling and mechanical property prediction.

목차

Abstract
1. Introduction
2. Theoretical Background of PINN
3. Applications of PINNs in Additive Manufacturing Processes
4. Applicability of PINNs in Welding Processes
5. Summary and Outlook
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090266198