메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ekanayake Waruni (충남대학교, Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University) Dinh Phuong Thanh N. (충남대학교) 이준헌 (Division of Animal and Dairy Science, Chungnam National University, Korea) 이승환 (충남대학교)
저널정보
한국동물유전육종학회 Journal of Animal Breeding and Genomics Journal of Animal Breeding and Genomics Vol.8 No.1
발행연도
2024.3
수록면
17 - 32 (16page)
DOI
10.12972/jabng.20240103

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The present study deploys a comparison of Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), and Genome Wide Association Studies (GWAS) in selecting optimum subsets of single nucleotide polymorphisms (SNPs) to be used in genomic prediction in cattle. The data simulation was carried out for 6,000 animals and 47,841 SNPs which include 43,633 polygenic markers and 4208 quantitative trait loci (QTL) using QMSim software. The genomic prediction was conducted with the best linear unbiased prediction (BLUP) method using the BLUPF90 program. The accuracy of prediction was computed in three different types, namely, Empirical all SNPs, Empirical QTL, and theoretical accuracy, Accuracy PEV . Among the three models, the highest Empirical all SNPs accuracy 0.79 was derived for GBM followed by 0.77 for XGBoost and 0.76 for GWAS. The Empirical QTL accuracy was almost equal for all three models. The maximum theoretical accuracy was obtained for GWAS which was 0.93, whereas GBM and XGBoost obtained 0.86 and 0.85 accuracy levels respectively. Our results indicate that all three models comparably performed in genomic predictions; however, subsets selected by both GBM and GWAS reported higher prediction accuracies compared to the whole SNP set. The number of QTL selected as a proportion of the total number of SNPs was superior in GWAS. These observations can be validated using real data which could enable further optimization of the analysis process.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0