메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gyu-Jun Jeong (Asan Institute for Life Sciences) Gaeun Lee (Asan Institute for Life Sciences) June-Goo Lee (Asan Institute for Life Sciences) Soo-Jin Kang (Asan Medical Center)
저널정보
대한심장학회 Korean Circulation Journal Korean Circulation Journal Vol.54 No.1
발행연도
2024.1
수록면
30 - 39 (10page)
DOI
https://doi.org/10.4070/kcj.2023.0166

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery morphology is based on the lumen and vessel segmentation. This study aimed to develop an automatic segmentation algorithm and validate the performances for measuring quantitative IVUS parameters. Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized for the automatic segmentation of IVUS images. Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there were close correlations between model-derived vs. experts-measured IVUS parameters; minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen area was similarly excellent compared to the experts' agreement. The model-based lumen and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average. Conclusions: The deep learning models can accurately and quickly delineate vascular geometry. The artificial intelligence-based methodology may support clinicians’ decision-making by real-time application in the catheterization laboratory.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0