메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이준희 (중앙대학교) 박성제 (중앙대학교)
저널정보
한국사회체육학회 한국사회체육학회지 한국사회체육학회지 제97호
발행연도
2024.7
수록면
345 - 355 (11page)
DOI
10.51979/KSSLS.2024.07.97.345

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The purpose of this study is to develop a model that can predict the probability of injuries occurring during weight training by utilizing machine learning algorithms for data analysis.
Method: For this purpose, this study utilized Google’s machine learning tool and Teachable Machine. The exercise movements chosen were Deadlift and Overhead Press, commonly used in weight training, while the injury movement was defined as the back rounding. Participants were trained to differentiate between “correct movements” and “injury movements,” which were then used to train the Teachable Machine to develop an injury identification model. The model’s error rate was then assessed using evaluation participants to determine its actual error rate.
Results: The Deadlift identification model and the Overhead Press identification model both achieved a class accuracy of 1.00 for both correct and injury-inducing postures, with a confusion matrix of 0. The learning rate per epoch and loss graph per epoch peaked early in the training process. The error rate of the injury identification model was 19% for the Deadlift identification model and 12% for the Overhead Press identification model.
Conclusion: The high accuracy per class and the result of the confusion matrix indicate effective hyperparameter adjustment. The overfitting observed in the learning rate and loss graph per epoch is likely due to the limited diversity in the training data, a characteristic of the study. The higher-than-expected error rate in the injury identification model is attributed to the constraints of the 2D posture estimation inherent in the Teachable Machine Pose Project, which relies on a Skeleton-Based Model that limits the representation of the human body in a 2D space.

목차

Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 결과
Ⅳ. 논의
Ⅴ. 결론 및 제언
참고문헌
ABSTRACT

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090259880