메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jong-Sung Ha (Woosuk University) Kwan-Hee Yoo (충북대학교)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.12 No.2
발행연도
2016.6
수록면
42 - 48 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present efficient algorithms for computing centroid directions for each of the three types of monotonicity in a polyhedron: strong, weak, and directional monotonicity, which can be used for optimizing directions in many 3D manufacturing processes. Strongly- and directionally-monotone directions are the poles of great circles separating a set of spherical polygons on the unit sphere, the centroids of which are shown to be obtained by applying the previous result for determining the maximum intersection of the set of their dual spherical polygons. Especially in this paper, we focus on developing an efficient method for approximating the weakly-monotone centroid, which is the pole of one of the great circles intersecting a set of spherical polygons on the unit sphere. The original problem is approximately reduced into computing the intersection of great bands for avoiding complicated computational complexity of non-convex objects on the unit sphere, which can be realized with practical linear-time operations.

목차

ABSTRACT
1. INTRODUCTION
2. NOTATION AND DEFINITIONS
3. APPROXIMATING STRONGLY- AND DIRECTIONALLY-MONOTONE CENTROIDS IN A POLYHEDRON
4. APPROXIMATING WEAKLY-MONOTONE CENTROIDS IN A POLYHEDRON
5. CONCLUSION
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090379234