메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전동희 (광주과학기술원) 구정민 (광주과학기술원) 문보창 (광주과학기술원)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제30권 제3호
발행연도
2024.7
수록면
141 - 147 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
점진적 광자 매핑 방식은 복잡한 전역 조명 효과를 효율적으로렌더링할 수 있다. 그러나 샘플이유한한 경우, 반경 축소비율 변수에 의해 분산과 편향 값이 크게 영향 받는다. 유한한 샘플을 사용한 렌더링 결과의 픽셀 오류 및 기울기를 추정하여 추정된 기울기를 기반으로 반경 축소비율을 결정하는 최적의 매개변수를 학습할 수 있다면, 렌더링 된 이미지의 오류를 줄일 수 있을것이다.본 논문에서는 점진적 광자 매핑 방식을 통한 렌더링과 매개변수 학습이 동시에 될 수 있도록 기울기를 추정하고 추정된 기울기를 유한 차분법을 통해 계산된 기울기와 비교하여 검증한다. 본 논문에서 추정된 기울기는 향후 점진적 광자 매핑 방식의 렌더링과 매개변수 추정을 동시에 수행하는 온라인 학습 알고리즘에 적용될 수 있을 것으로 기대된다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경: 점진적 광자 매핑
4. 온라인 점진적 광자 매핑 최적화를 위한 기울기 계산
5. 결과 및 논의
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090107078