메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문강륜 (비주얼캠프) 김영한 (비주얼캠프) 박용준 (비주얼캠프) 김용규 (비주얼캠프)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제30권 제3호
발행연도
2024.7
수록면
51 - 59 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시선 벡터 정답값을 갖는 대규모 데이터의 수집은 시선 추적 분야에서 많은 비용을 필요로 한다. 본 논문에서는 원본 사진의 시선을 수정하는 데이터 증강 기법을 사용하여 제한된 개수의 시선 정답값이 주어진 상황에서 시선 추적 모델의 정확도를 향상시키는 방법을 제안한다. 시선 구간 다중 클래스 분류를 보조 작업으로 학습하고, 디퓨전 오토인코더의 잠재 변수를 조정하여 원본 사진의 시선을 편집한 사진을 생성한다. 기존의 얼굴 속성 편집과 달리, 우리는 이진 속성이 아닌 시선 벡터의 피치와요를 지정한 범주 내로 변경하며, 편집된 사진을 시선 추적 모델의 증강된 학습 데이터로 활용한다. 시선 정답값이 5만 개 이하일 때 준지도 학습에서의 시선 추적 모델의 정확도 향상은 제안한 데이터 증강 기법의 효과를 입증한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 사전 지식
4. 제안하는 방법
5. 실험
6. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090107041