메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
E Zhang (Huazhong University of Science and Technology) Kangli Wang (Huazhong University of Science and Technology) Kai Jiang (Huazhong University of Science and Technology)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
3,108 - 3,113 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Liquid metal battery (LMB) exhibits the potential to appear as a cost-effective solution for grid-scale energy storage to improve the stability and flexibility of new power systems. In order to improve the consistency and reliability of liquid metal battery packs, a novel classification method is proposed in this paper. Firstly, a feature vector for battery screening is established from the key influencing factors of battery pack performance. Secondly, the density-based spatial clustering of applications with noise (DBSCAN) algorithm whose input parameters have been optimized by the elbow method is used to detect outliers among sample data. Then, the remaining data are screened by the Mean shift algorithm and the Davies-Bouldin Index (DBI) as the optimized objective. Finally, an experimental of 216 laboratory-made LMBs with the proposed method is presented and the clustering optimization results verify that the proposed method can automatically determine the number of clustering and improve the accuracy of clustering with outlier detection.

목차

Abstract
I. INTRODUCTION
II. EXPERIMENT DATA AND PROCESSING
III. CLUSTERING METHODS
IV. EXPERIMENTS AND RESULTS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0