메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hyunwoo Song (Inha University) Yeongsang Lee (Inha University) Gab-Su Seo (National Renewable Energy Laboratory) Dongjun Won (Inha University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
453 - 458 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Abnormal climates due to global warming have emerged as a big concern in the global community. To mitigate climate change and achieve sustainability, distributed energy resources (DERs), including solar and wind, have been recently deployed in power systems. As the penetration level of DERs has increased, however, it caused a multitude of issues in the power systems, such as voltage fluctuation in the distribution network limiting renewable hosting capacity. On the other hand, the electric vehicle (EV) industry is rapidly growing to facilitate the transition to a carbon-neutral community, illuminating the potential of EVs as a flexible grid asset to mitigate some of the issues and improve grid operation, if properly exploited. To explore the potential of EVs, this paper proposes an EV scheduling strategy. By using an optimal EV charging scheduling proposed, distribution system operators (DSOs) can minimize their operating costs and stably operate the system with a high level of DERs. To validate the method, a modified IEEE 33-bus system with DERs is developed. The case study shows the proposed scheduling strategizes EV charging to reduce the cost of PV curtailment. In the study, the method outperforms the renewable-only case with curtailment by 4.97% in DSO cost. It also demonstrates its potential to increase the renewable hosting capacity by harmonizing EV charging with renewables.

목차

Abstract
I. INTRODUCTION
II. MAIN CONCEPT
III. CHARGING SCHEDULING STRATEGY
IV. CASE STUDY
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0