메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재승 (고려대학교) 유제혁 (덕성여자대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제29권 제3호
발행연도
2024.6
수록면
51 - 65 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트 그리드에서 전력 시스템을 효과적으로 운영하기 위해서는 전력 수요량을 정확히 예측하는 것이 중요하다. 최근 기계학습 기술의 발달로, 인공지능 기반의 전력 수요량 예측 모델이 활발히 연구되고 있다. 하지만, 기존 모델들은 모든 입력변수를 수치화하여 입력하기 때문에, 이러한 수치들 사이의 의미론적 관계를 반영하지 못해 예측 모델의 정확도가 하락할 수 있다. 본 논문은 입력 데이터에 대하여 거대언어모델을 통해 추출한 특징을 이용하여 단기 전력 수요량을 예측하는 기법을 제안한다. 먼저, 입력변수를 문장 형식의 프롬프트로 변환한다. 이후, 가중치가 동결된 거대언어모델을 이용하여 프롬프트에 대한 특징을 나타내는 임베딩 벡터를 도출하고, 이를 입력으로 받은 모델을 학습하여 예측을 수행한다. 실험 결과, 제안 기법은 수치형 데이터에 기반한 예측 모델에 비해 높은 성능을 보였고, 프롬프트에 대한 거대언어모델의 주의집중 가중치를 시각화함으로써 예측에 있어 주요한 영향을 미친 정보를 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 기법
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090083591