메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김예인 (한동대학교) 이세은 (한동대학교) 권용성 (한동대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제10호
발행연도
2020.10
수록면
8 - 15 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝을 사용한 예측 방법은 동일한 예측 모델과 파라미터를 사용한다 하더라도 데이터셋의 특성에 따라 결과가 일정하지 않다. 예를 들면, 데이터셋 A에 최적화된 예측 모델 X를 다른 특성을 가진 데이터셋 B에 적용하면 데이터셋A와 같이 좋은 예측 결과를 기대하기 어렵다. 따라서 높은 정확도를 갖는 예측 모델을 구현하기 위해서는 데이터셋의 성격을 고려하여 예측 모델을 최적화하는 것이 필요하다. 본 논문에서는 하루 대학 캠퍼스 전력사용량을 1시간 단위로 예측하기 위해 데이터셋의 특성이 고려된 예측 모델이 도출되는 일련의 방법을 단계적으로 제시한다. 데이터 전처리 과정을 시작으로, 이상치 제거와 데이터셋 분류 과정 그리고 합성곱 신경망과 장기-단기 기억 신경망이 결합된 알고리즘(CNN-LSTM: Convolutional Neural Networks-Long Short-Term Memory Networks) 기반 하이퍼파라미터 튜닝과정을 소개한다. 본 논문에서 제안하는 예측 모델은, 각 시간별 24개 포인트에서 2%의 평균 절대비율 오차(MAPE: Mean Absolute Percentage Error)를 보인다. 단순히 예측 알고리즘만을 적용한 모델과는 달리, 단계적 방법을 통해 최적화된 예측 모델을 사용하여 단일 전력 입력 변수만을 사용해서 높은 예측 정확도를 도출한다. 이 예측 모델은 모바일 에너지관리시스템(Energy Management System: EMS) 어플리케이션에 적용되어 관리자나 소비자에게 최적의 전력 사용 방안을 제시할 수 있으며 전력 사용 효율 개선에 크게 기여할 것으로 기대된다.

목차

요약
Abstract
1. 서론
2. 모델 최적화
3. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0