메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황인준 (서강대학교) 김희주 (서강대학교) 김유진 (서강대학교) 이윤동 (서강대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제37권 제3호
발행연도
2024.6
수록면
311 - 322 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는, 추천시스템 연구에 자주 활용되는 무비렌즈 데이터에 대한 탐색적 분석을 통하여 무비렌즈 데이터의 자세한 특성을 살펴보고, 추천시스템에서 심층신경망을 이용한 협업필터링 (NCF) 방법으로 잘 알려진 신경망행렬분해법을 개선하기 위한 대안을 모색한다. 본 연구에서, 제안한 일반화 NCF (G-NCF) 방법은 기존의 NCF 방법에 비하여 주요 평가 지표에서 평균적으로 우수한 특성을 보이지만, 평가지표의 산포가 다소 커지는 단점도 함께 가진다. 성능 비교를 위한 평가 지표로 MAP와 nDCG 등을 이용하였다.

목차

Abstract
1. 서론
2. 무비렌즈 데이터
3. NCF 알고리즘과 그 개선
4. 성능의 비교와 평가
5. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089963284