메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민재 (중앙대학교) 성병찬 (중앙대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제37권 제3호
발행연도
2024.6
수록면
297 - 309 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 자기회귀 신경망 모형과 지수평활법을 결합(NNARX+ETS 모형)하고 그 성능을 평가한다. 제안된 결합 모형은 시계열 자료를 예측하기 위하여 NNARX 모형의 외생변수로서 ETS 모형의 구성 성분을 활용한다. 이 모형의 주요 아이디어는, 신경망 모형이 원시계열 자료의 과거 시차만을 고려하는 것을 한계를 넘어서서 전통적 시계열 예측 방법인 지수평활법에 의해서 추출된 정제된 시계열 구성 성분까지도 추가로 신경망 모형의 입력값으로 사용하는 것이다. 예측 성능 평가는 2가지 실제 시계열 자료를 사용하였으며 제안된 모형을 NNAR 모형 및 전통적 시계열 분석 방법인 ETS와 ARIMA 모형과 비교하였다.

목차

Abstract
1. 서론
2. 지수평활 모형
3. NNAR model
4. NNARX+ETS mode
5. 예측 성능 평가
6. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089963275