메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임승준 (홍익대학교) 이정호 (건국대학교) 류춘호 (홍익대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第49卷 第2號
발행연도
2024.5
수록면
21 - 41 (21page)
DOI
10.7737/JKORMS.2024.49.2.021

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
This study conducted crawling on data from used car online platforms. As a result, data on 28,751 vehicles including 72 features of vehicle specifications and vehicle options were obtained. And this data were classified by vehicle size. Next, we tried to select the model for the best used car price prediction by vehicle size by executing a ML model. To this purpose, we first execute a Decision Tree based ML models that utilizes the all feature by vehicle size, and feature selection(removing the feature with zero influence) was executed through the Lasso regression model with the same sampling, based on this, a Decision Tree based ML model was re-executed. As a result, it was confirmed that there was no difference in the cost function between them. Next, a stacking ensemble model was executed based on the execution results of the bagging ensemble model and the boosting ensemble model by vehicle size. As a result, the excellence of the stacking ensemble model was not confirmed. Lastly, Tree SHAP Value was visualized for the best models by vehicle size to confirm the attribution level and direction of the feature. Through this, it is intended to prove the usability of the Lasso regression model through feature selection techniques and to support problem solving due to asymmetry of information between used car sales officials.

목차

Abstract
1. 서론
2. 선행연구
3. 자료의 수집 및 특성 선정
4. 머신러닝 모델의 실행 과정
5. 머신러닝 모델의 실행 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089904472